

Decarbonising steel making by utilization of deeply cleaned coke oven gas.

Round Table Conference on Advancing India's Steel Industry Growth at Ranchi on 30th & 31st May, 2024

Dr. Frank Sowa | Industrial Engineering | Decarbonising steel making | 30.05.2024 © DMT GmbH & Co. KG

Introduction

- Steel industry worldwide is responsible for high CO2 emissions contributing to climate change.
- New technologies like direct reduction iron (DRI) technologies are at the threshold of industrial
 implementation and may shape the steel making for the next decades.
- Until these technologies have reached their industrial maturity, changeover technologies shall also play a role in decarbonizing steel making.
- Coke oven gas contains a high percentage of hydrogen and is hence an excellent reduction agent in the blast furnace that can replace the injection of natural gas or coal fines.
- In order to serve as reduction agent in the blast furnace, coke oven gas has to be deeply cleaned from residual hydrogen sulfide and aromatic carbons such as BTX / naphthalene.
- A German steel plant is actually using deeply cleaned COG for blast furnace injection as a changeover technology and is saving a lot of costs due to savings in CO₂ trade certificates.

DMT's Core Technologies in a By-Product Plant

COG Cooling

- Primary Gas Coolers incl. chilled water stage
- Chilled Water Unit (absorption type or compression type)

Tar and Dust Removal

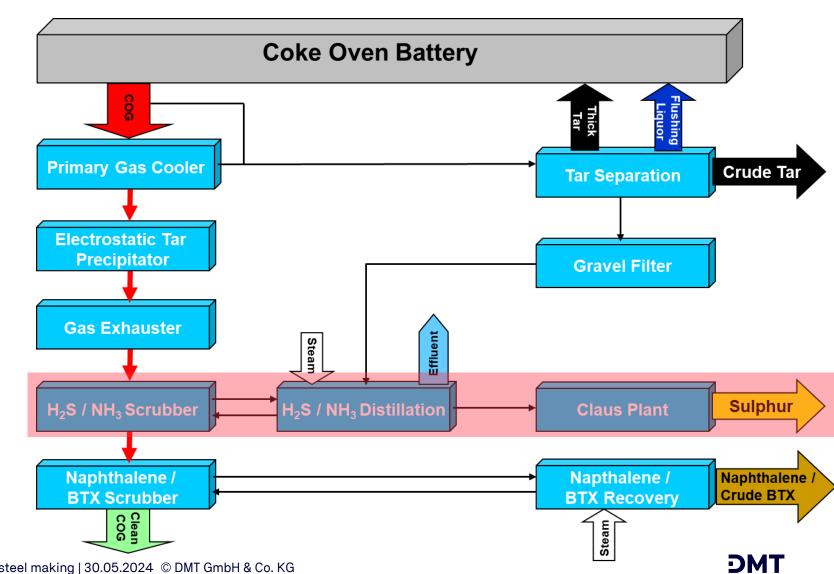
- Electrostatic Tar Precipitation (ETP)
- Tar Separation
- Gravel Filters

Gas Exhauster

COG scrubbing

- H₂S / NH₃ scrubbing
- naphthalene and/or BTX scrubbing

Scrubbing liquor regeneration


- H₂S / NH₃ stripping
- naphthalene / BTX stripping

Sulphur Generation

Claus plant incl. NH₃ cracking

Waste Water Cleaning

Waste water Treatment Plant

DMT Technological Highlight – Combi Gas Scrubber (H₂S, NH₃)

H₂S/NH₃-Combi-Scrubber 83,000 Nm³/h

- Several stages of packings
 used as gas -liquid mass transfer contact area;
 in combi-scrubbers with higher mass transfer
 efficiency through higher specific surface area and
 still limited risk of clogging and pressure drops
- Special flow path inside packings
 to increase gas turbulence and maximize efficiency
- Low pressure drop
- High efficiency liquid distribution trays
 to optimize scrubbing liquor distribution over the
 whole packing surface
- Design flexibility: scrubbers with diameters higher than 5 m and heights of ca. 50 m
- Typical clean gas parameters
 - $H_2S \le 500 \text{ mg/Nm}^3$; $NH_3 \le 30 \text{ mg/Nm}^3$

DMT Technological Highlight – H₂S / NH₃ Combi-Stripper

NH₃ and H₂S Combi-Stripper

- Titanium material for stripping columns and trays corrosion resistant and long life-time
- High stripping efficiency valve trays reduced ratio steam: liquid flows
- Self Cleaning Push Valves / Fix Valves
- Low steam consumption
- Wide Operation Range
- Low pressure drops
- Use of Vapor Condenser to adjust the content of NH₃/H₂S/H₂O Acid-Gas composition in order to improve efficiency of downstream sulphur recovery unit
- 100% Stand-by Solution with second combistripper
- Easy cleaning of column internals

DMT Technological Highlight - NH₃ Cracking/Sulphur Recovery

Claus Plant with integrated NH₃ cracking

- NH₃ / H₂S vapors incineration without COG support during operation
- NH₃ / HCN cracking by Ni based catalyst
- High conversation rate of H₂S
 to elementary Sulphur
- No emission to the environment, tail gas feeding up-stream PGC
- High Sulphur quality > 99,5 % purity
- Color bright yellow
- Sulphur product in liquid or solid form

DMT BPP Engineering - References India

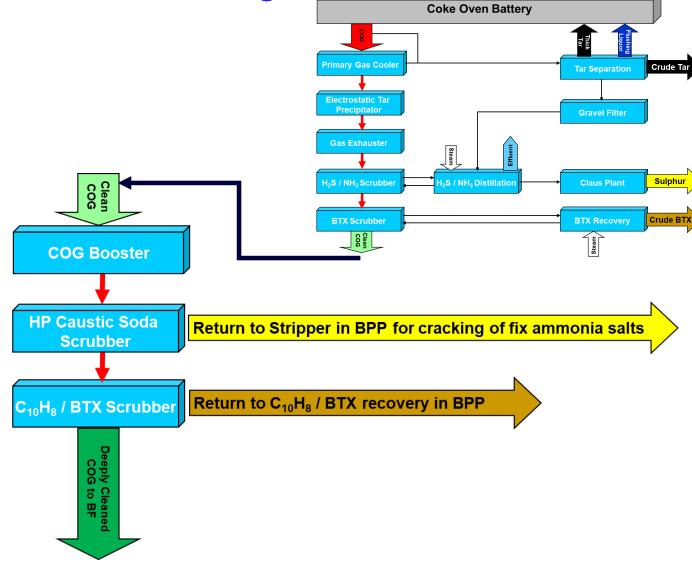
Client	Location	Contract Year	Project	COG Flow
ArcelorMittal Nippon Steel	Hazira	2023	New complete BPP (greenfield)	74.000 Nm³ (phase 1) 74.000 Nm³ (phase 2)
Bhushan Power & Steel Ltd. (BPSL) (now JSW)	Rengali	2012	New complete BPP (greenfield)	70,000 Nm ³
Tata Steel	Jamshedpur	2012	Engineering, supply of key equipment & commissioning of a caustic soda scrubber (for a COG-to-hydrogen plant)	10,000 Nm ³
Bhilai Steel	Bhilai	2011	New complete BPP (greenfield) & additional coke oven gas treatment from other BPP	45,000 Nm³ plus 105,000 Nm³
Bhushan Steel Ltd. (BSL) (now Tata Steel)	Meremandali	2008	New complete BPP (greenfield)	77,000 Nm ³
SAIL Indian Iron and Steel Company (IISCO)	Burnpur	2007	New complete BPP (greenfield)	45,000 Nm ³

DMT's High Pressure COG Fine Cleaning

COG Booster

Boosting COG up to 15 bar for HP cleaning

COG scrubbing


- HP Caustic Soda scrubber for H₂S removal
- HP Wash Oil scrubber for naphthalene and BTX removal

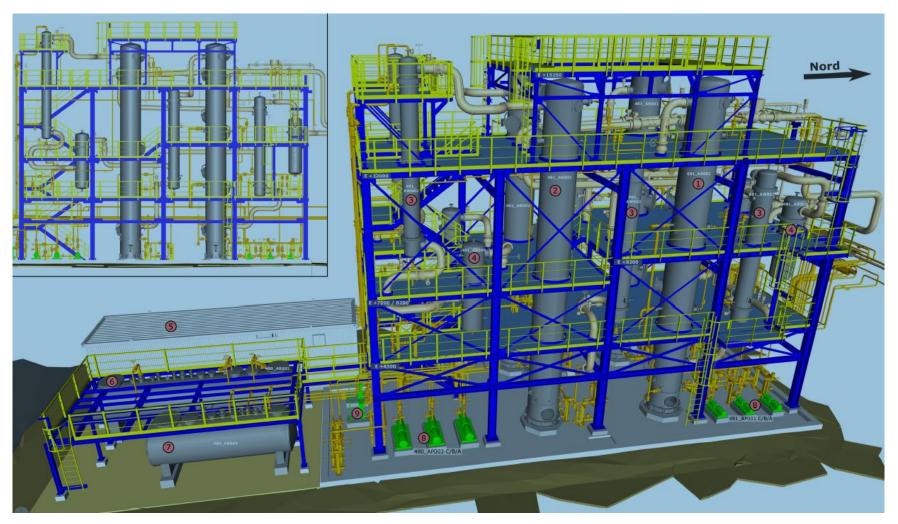
Scrubbing liquor regeneration

- Caustic soda liquor in BPP (H₂S / NH₃ stripping unit)
- Enriched wash oil in BPP (naphthalene / BTX stripping unit)

Chilled Water plant for COG cooling

 Deep cooling of COG down to <5°C (for North European winter conditions)

Technical Details High Pressure Scrubbing System


Basis of Design

	IN (from regular BPP)	OUT (from HP COG fine cleaning)
Coke Oven Gas Flow	40.000 m³/h (STP)	40.000 m³/h (STP)
Coke Oven Gas Temperature	22 – 27 °C	3 – 5 °C
Coke Oven Gas Pressure	< 0,5 bar g	6,5 - 13,7 bar g
Coke Oven Gas Composition		
H_2 CH_4 CO CO_2 N_2 O_2 NH_3 H_2S HCN BTX Tar	51 - 60 % 20 - 25 % 5,5 - 7,5 % 0,05 - 0,8 % 5 - 11 % 0,1 - 1,5 < 0,03 g/Nm³ < 0,5 g/Nm³ < 1 g/Nm³ approx. 30 g/Nm³ approx. 20 mg/Nm³	< 20 mg/m³ < 500 mg/m³

Technical Details High pressure scrubbing system

3D Model of the Plant

Main Dimensions

Length: 19,2 m Width: 7,0 m Height: 15,2 m

1H₂S Scrubber (2x)

2 BTX Scrubber (2x)

3 heat exchanger (6x)

4 droplet separator

5 chiller plant

6 NaOH tank

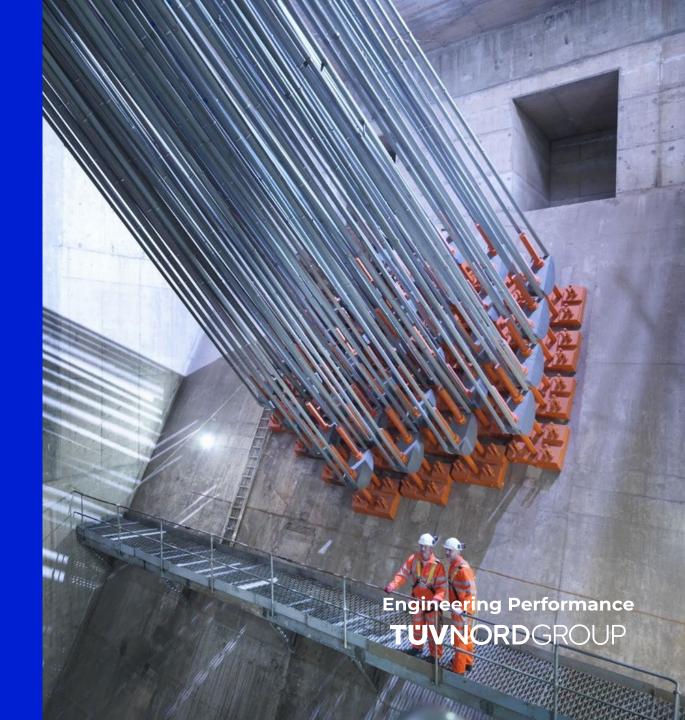
7 scrubber oil tank

8 pumps (9x)

9 plate heat exchanger (2x)

Technical Details High pressure scrubbing system

Pictures from the reference plant in Germany


Thank you for your attention!

Dr. Frank Sowa

DMT GmbH & Co KG

frank.sowa@dmt-group.com

+49 171 2271650

